The Synthesis of Complex Audio Spectra by Means of
Discrete Summation Formulas

JAMES A. MOORER

Department of Music, Stanford University, Stanford, CA 94305

A new family of economical and versatile synthesis techniques has been discovered, which
provide a means of controlling the spectra of audio signals, that has capabilities and control
similar to those of Chowning’s frequency modulation technique. The advantages of the current
methods over frequency modulation synthesis are that the signal can be exactly limited to a
specified number of partials, and that ‘‘one-sided’’ spectra can be conveniently synthesized.

INTRODUCTION: The search for ways to give elec-
tronic sounds a ‘‘natural’’ quality has been considered very
important among many researchers. Most methods for
doing so were quite cumbersome until Chowning’s mar-
velous discovery that natural sounding tones could be pro-
duced in a simple manner by the use of frequency modu-
lation to generate complex, time-varying spectra [1].

By way of review, the premise of frequency modulation
synthesis is that *‘the character of the temporal evolution
of the spectral components is of critical importance in the
determination of timbre’> [1]. Through our studies of the
physical properties of actual music instrument tones and
their perceptual implications [2], it is clear that the percep-
tion of timbre is a very complex subject, but that it is
critically dependent upon temporal change. This gives us
hope that by simulating certain changing properties of a
music instrument tone we can give the illusion of the
instrument without necessarily having to duplicate the
waveform exactly. Our studies with frequency modulation
synthesis have given us much encouragement in this direc-
tion.

Although it is not necessarily the goal of electronic
musicians to be able to synthesize exactly the sounds of
orchestral instruments, for there are numerous excellent
musicians who can do this quite well, it is of interest to
use these tones as starting points for the exploration of
timbre. In this way, we begin with a tone that already
sounds ‘‘natural’’, so that hopefully our extensions into un-
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known timbres can preserve some of this natural quality.

In this paper we discuss four members of a family of
synthesis techniques that includes frequency modulation
synthesis as well as many others. We call this family dis-
crete summation formulas, because they are derived as
sums, finite or infinite, of trigonometric series which have
closed-form sums. The hope is that the closed forms are
easier to compute than the entire series itself. In many
cases, such as frequency modulation synthesis, this is in
fact the case.

We should point out that this method was discovered
independently by David Lewin of Harvard University
somewhat after our own discovery [3].Since the formulas
are quite old, it is possible that the discovery has been made
by still other researchers.

DISCRETE SUMMATION FORMULAS

The equation we will start with has been known for quite
a few years. Although we shall not do so here, it can be

simply derived as an exponential series:
N

> aFsin (0+kp) =
=0
sin6 —asin (0 —B) —a¥*'[sin{0 +(N +1)8}—asin(@ +NB)]

ey

This can be found in Jolley [4] and many others. In this
form it is a mathematical identity, valid for all values of

1+a%—2a cos 8
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a, 6, and 8. We can make this into a synthesis technique
by setting 6 to 27f.t and B to 27f,,t, mimicking some of
the notation from frequency modulation synthesis. Accord-
ingly, we will callf, the center frequency andf,, the modu-
lating frequency. We will call a the ratio, because the am-
plitude of each partial is related to the amplitudes of ad-
jacent partials by factors of a.

Note that we can make a harmonic series by setting
mfm = nf,, where m and n are integers. Similarly, we can
make an inharmonic series by making m or n into irrational
numbers.

Fig. 1 shows an example where f, = 3000 Hz, f,, =
2000 Hz, N = 3, and a = 0.5. This plot is the discrete
Fourier transform of an actual waveform generated through
the use of Eq. (1). As we see, each partial is 6 dB lower than
the previous partial, just as would be predicted from setting
the ratio to 0.5. Fig. 2 shows an example like the previous
one but wherea = 2.0, producing a spectrum such that each
succeeding partial is 6 dB greater than the previous one.
This gives us a way to produce an exactly band-limited
signal where the ratio of the amplitudes of adjacent
harmonics can be controlled as a function of time to
produce time-varying spectra.

A more simple version can be produced by allowing the
summation to extend to infinity. This produces the fol-
lowing:

= . sin @ —a sin (60—
2 a® sin (0+kB) = ( ’3), a<l. (2)
= 1+a2?—2a cos B
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Fig. 1. Spectrum of a waveform produced by Eq. (1) for
F .= 3000 Hz, F,, = 2000 Hz, N = 3, and a = 0.5. This is
the discrete Fourier transform of an actual synthetic waveform.
Since this is a numerical and not a theoretical transform, the peaks
have nonzero width, and other peaks (at 7500 and 9500 Hz) are
evident due to numerical considerations.
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Fig. 2. Spectrum of a waveform produced by Eq. (1) for
F _=3000 Hz, F ,= 2000 Hz, N = 3, anda = 2.0.
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If we use a ratio that is small enough so that the
partials become very small as their frequencies approach
half the sampling frequency, as is commonly done with
frequency modulation synthesis, then there is no objec-
tionable aliasing. This form is, of course, restricted to
values of the ratio that are less than 1, for the sum does not
converge for a=1. We can easily see that if f, = f,, the
numerator can be simplified even further.

These formulas express ‘‘one-sided’’ spectra. The
partials extend in positive integral multiples of f,, from f.
There are several ways to produce ‘‘two-sided’’ spectra.
Possibly the cleanest way is through the following formula,
which can be easily derived from Eq. (1):

sin 6 + ﬁ a*{sin (6 +kB) + sin (6—kB)}
k=1
sin 0 (1 —a%—2a™*! [cos{(N+1)B}—a cos NB])

- 1+a*—2a cos B -

In Fig. 3 we show an example of Eq. (3) for f, = 7000
Hz, f,, = 2000 Hz, a = 0.5, and N = 2. Likewise,
Fig. 4 is the same except thata = 2. Again, these figures
are discrete Fourier transforms of actual waveforms gen-
erated by Eq. (3). We can take the sum to infinity, which
gives an unusually compact formula:

sin 0 + 3 akfsin(@+kB) + sin(@—kB)}

k=1
_ (1—a®sin @ “@
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Fig. 3. Spectrum of a waveform produced by Eq. (3) for
F,=7000 Hz, F ,,= 2000 Hz, N = 2, anda = 0.5.
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Fig. 4. Spectrum of a waveform produced by Eq. (3) for
F ,=7000 Hz, F ,= 2000 Hz, N = 2, anda = 2.0.
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These are but a few of the possible formulas that can be
derived from Eq. (1). There are a tremendous number of
variations. For instance, if we desire only odd harmonics,
we can set f,, = 2f, and get quite a bit of simplification.
We hope that this exposition will spur the imagination of
the reader and result in a whole range of new and useful
formulas.

NORMALIZATION

The formulas presented in Egs. (1) through (4) have the
objectionable quality that the amplitude of the signal
changes as the ratioa changes. As in frequency modulation
synthesis, it is important that we be able to maintain the
same amplitude throughout the whole range of values of a.
The question is, what do we mean by amplitude? There
are, in fact, several different normalization criteria.
Ideally, what we would like to normalize is the loudness of
the signal for a wide range of ratios. Unfortunately, this
would require a detailed model of loudness perception,
which tends to be quite complicated (see, for instance, the
model of Zwicker and Scharf [5]). Given that we cannot
easily normalize for loudness, there are two other choices
that will be discussed here, normalizing for peak amplitude
and normalizing for constant power.

If we choose to synthesize a harmonic spectrum, and
we use a cosine series rather than a sine series, then all the
spectral components will achieve their maximum value at
the beginning of the period, so that we can compute the
maximum amplitude of the waveform simply by taking the
sum of the amplitudes of the harmonics. This is easily done
and provides a reasonable approximate normalization in
the more general case. This method has a slight difference
in perceived loudness between the smallest and largest
values of the ratio.

It could be argued that peak amplitude is the only impor-
tant consideration, since when working in integers, the
overflow problem is quite difficult to deal with. Our feeling
is that this is placing the concern more on the technical
aspects of scaling rather than on the musical aspects. By
expending more computer time and money, these technical
limitations can be dissolved, so that there is no reason to
expect that the diminishing costs of technology would not
eventually remove the technical limitations, in which case
it is important to deal with the musical aspects without
extensive regard to technical aspects. Of course, some
attention to economy is given in that one of the factors to
recommend this synthesis technique is its efficiency, but
we will deal mostly with power normalization here because
it does not imply a substantial increase in computer time.

To normalize the power in the signal, we sum the squares
of the amplitudes of the partials. The reciprocal of the

1

square root of the sum is then the normalization factor.
The normalization factors for the sums in Eqs. (1) through
(4) are the following:

S
\/ e ©®)
V1-a? 6)

1—a?
V 1 Far=2z7e M

1—a?
TFaz (®)
Since these normalization formulas are somewhat
difficult to compute in real time, we suggest computing the
normalization factors for the range of a of interest, and
storing the factors in a table. This way, we only have to look
up the appropriate value rather than compute the square root
each time. This can also be done when computing a¥*! for
Eq. (1) and (3). A table of aV** could be prepared so as to
avoid doing this computation at each sample.
Unfortunately, if any of the harmonics fall directly upon
any other harmonics’ formulas (5) through (8) are not
correct, because the overlapping harmonics may either
cancel or reinforce, thus altering the total power in the
signal. For this special case we must use a different
normalization function. For the one-sided functions, over-
lap occurs only in the harmonic case when f,, is negative,
thus reflecting about zero. In two-sided functions, unless
the function is band-limited properly, there will be reflec-
tions that in the harmonic case will overlap and possibly
cancel other harmonics. We can compute the normalization
functions in this case by setting f,= nf,,. For generality, we
also add a phase term ¢ into all the sines in Egs. (1) through
(4). This will allow us to determine the normalization
functions regardless of whether we synthesize the signal
using sine functions, cosine functions, or any arbitrary
phase angle.

1
1 _a2N+2 ]
\/ B g —a®* {1+2n cos 2¢}

1 )
1 —a 2N+2
\/ 1—a?

,  N=2n

, N<2n
—a?{1+2(N —n) cos 2¢}

I
1 (10)
\/ —a? {14+2n cos 2¢}

1—a?

—2a 2N+2 -2 {aZn —a 2(N—7L+1)} cos 2¢)

1—a?

\fl+a2

1

—a® {1+2 (n—1) cos 2¢p} °’

an

, N<2n

14a _a2N+2 2(N+n+1)

1—aq?
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—a? {1+2 (n—1) cos 2¢}

\/ 14+a%—2a2"cos 2¢
1—a?

(12)

The formulas for the finite sums [formulas (9) and (11)]
have two different cases, depending on how far the re-
flected sidebands extend. The normalization is different,
depending on whether the sidebands extend up to or beyond
the center frequency.

Fig. 5 shows the case where ¢=0. In this case the
reflected sidebands are inverted in phase and thus destruc-
tively interfere. The lower sidebands are thus quite at-
tenuated. Fig. 6 shows the case where ¢p=mn/2. Here the
reflected sidebands add and thus raise the amplitudes of the
lower sidebands. In both these figures the infinite sum
shown in Eq. (4) was used. The center frequency was
f¢=2000 Hz, and the difference frequency wasf,,=400 Hz.
Again, these figures are the discrete Fourier transforms of
actual waveforms generated by Eq. (4).

There comes a bit of a problem if we wish to change
smoothly from a harmonic case, where the sidebands
overlap and thus require special normalization functions, to
the inharmonic case, where there is no sideband overlap. If
we let ¢=/6, then the normalization functions are similar
enough to allow normalization by a single function as we
change from harmonic to inharmonic. This is only an
approximation to true power normalization, but it seems to
be adequate for most purposes.

REFLECTED SIDEBANDS

A sinusoid at a negative frequency is equivalent to a
sinusoid at the absolute value of that same frequency with
a phase reversal, that is to say, sin (—6) = —sin 6. To
see how this applies to the summation formulas, let us take
the left-hand side of Eq. (4) and write it out, adding an
arbitrary phase angle ¢:

sin (6 +¢)

+ asin (0+¢—B) + asin (0+d+B)

+ a?sin (0+¢—2B) + a®sin (0 +¢ +2B)
+ a®sin (0+¢—38) + a®sin (6+¢p+3B)
s mw, a7

To be specific, let us take the case where § = 38. This
can be written as follows:

sin (3B8+¢)

+a sin 2B8+¢) + a sin (48+¢)

+ a?sin (B+¢@) + a?sin (58+¢)
+a3sin ¢ + a®sin (68+¢)

+ a*sin (—B+¢) + a*sin (78+¢)
+ a®sin (—2B+¢) + a®sin (8B8+¢)
—_— (18)

Now let us generalize. We shall set & = nf8, which repre-
sents one form of the harmonic case. We shall group the
harmonics together, using the trigonometric relation sin
(—x) = —sinx, and starting at zero frequency.

720

a™sin ¢

+ a"'sin (B+¢) — a™sin (B—)

+ a2 sin 2B+¢) — a™*?sin 2B —)
+ a"3sin (3B+¢) — a™3sin (38—0)

+ asin {(n—1)B+¢} — a®*'sin {(n—1) B—¢}
+ sin (mB+¢) — a?"sin (nB—a)

+ asin {(n+1)B—¢}— a?*!sin {(n+1)8 —¢}
+ a®sin{(n+2)B—¢} — a****sin {(n+2)B—¢}
+ a®sin {(n+3)B+¢} — a®***3sin {(n+3)8—¢}

19)

Thus we can see that by rotating ¢, we can get the har-
monics to add or cancel to any degree we desire. If
a < 1.0, the amplitudes of the reflected sidebands will
fall off and soon become negligible. If we use the finite
form as shown in Eq. (3), then the reflected sidebands
will not become negligible. Some most interesting spectra
can be produced in this manner.

If the relation between 6 and @ is not rational, then there
is no overlap, and the reflected sidebands are interleaved
with the unreflected sidebands.

The one-sided form of the formula as shown in Egs. (1)
and (2) can also have reflected sidebands. They occur when
B < 0. If we set # = —nf3, we can write down the har-
monics in order as we did above:

0
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Fig. 5. Spectrum of a waveform produced by Eq. (4) for
F,.= 2000 Hz, F, = 400 Hz, ¢ = 0, and a = 0.8. The
reflected lower sidebands have reduced the amplitude of the
partial at 400 Hz because of destructive interference.
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Fig. 6. Spectrum of a waveform produced by Eq. (4) for
F_=2000Hz, F,,= 400 Hz, ¢ = @/2, and a = 0.8. This is
the same as Fig. 5, except that the phase has been changed. The
reflected lower sidebands have increased the amplitude of the par-
tial at 400 Hz because of constructive interference.
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a™sin ¢

+ a"!sin (B+¢) — a™!sin (B—o)

+ a"%sin 2B—¢) — a**?sin 2B—¢)
+ a"3sin 3B+¢) — a**3sin 38 —¢)

+ asin {(n—1)B+¢} — a**1sin {(n—1)8—¢}
+ sin @B+@) —a*sin(nB — ¢)

—a**sin {n+1)B—o¢}

—a**2sin {(n+2)B—¢}

—a®™3sin {(n+3)B—o¢}

e (20)

This is similar to the two-sided form, as shown in Eq.
(19), except that there are no more overlapping terms above
the center frequency term at n3. For a < 0, this produces
a very prominent harmonic at n3. Quite often a prominent
harmonic like this will cause the tone to ““‘de-fuse,”” so
that two tones are perceived: a tone at the fundamental
frequency and a tone at nf3.

Fig. 7a shows the one-sided form with f,, = —500 Hz,
Je=2000Hz, a = 0.8, and ¢ = 0. By rotating the phase
angle ¢ through /2, we can get the maximal effect on the
overlapping sidebands. This is shown in Fig. 7b.

In general, we prefer the two-sided form, even though it
requires a complicated normalization function, because it
produces more reflected sidebands. In the inharmonic case
this gives a much more dense spectrum. In the harmonic
case the phase angle ¢ gives us another degree of freedom
in controlling the amplitudes of the lower harmonics. With
overlapping reflected sidebands we can produce a tremulant
much like that found with frequency modulation synthesis
by simply setting nf, = mf, + 8. The quantity & we call
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Fig. 7. Spectrum of a waveform produced by Eq. (2) for
F = 2000 Hz, F,, = 500 Hz, anda = 0.8. a. ¢ = 0, causing
the amplitude of the lowest partials to be reduced. b. ¢ = /2,
causing the amplitude of the lowest partials to be increased.
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the skew frequency. It causes the reflected sidebands to
occur at frequencies slightly different from the sidebands
they will overlap. This difference causes the harmonics
to beat, with the result that the effective amplitude of these
overlapped harmonics will rise and fall periodically, at a
rate determined by 8. This will cause a periodic change
in loudness, a change in timbre, and a periodic change in
the perceived pitch of the tone. The pitch appears to change
because the frequency of each overlapped harmonic will
vary between the frequencies of the two sinusoids that are
beating. These reasons make the two-sided form quite
attractive for general-purpose synthesis.

DYNAMIC SPECTRA

To use the summation formulas effectively, we must
gain insight into how the spectrum varies as the various
parameters are changed. A convenient way to do this is
through the use of three-dimensional plots of harmonic
amplitudes as functions of some parameter. The parameters
we have to deal with are the number of sidebands N,
the ratio between the amplitudes of adjacent harmonics a,
the center and difference frequencies f cand f . and the
phase of the harmonics ¢.

Fig. 8 shows three such plots for the two-sided formula
[Eq. @)] with N = 5, f. = f,, = 1, and the phase ¢
set to 0, 7/6, and 7/2, respectively. These plots show a
perspective representation of a three-dimensional function.
We are plotting, in this case, amplitude on the vertical axis,
frequency on the rear-to-front axis, and ratio on the hori-
zontal axis. We see the effect on the harmonic amplitudes
of changing the ratio continuously from 0 to 1. The smaller
plots in the upper part of each graph show how the ratio
changes with distance along the horizontal axis, what the
power normalization function [as computed by Eq. (11)]
is as a function of the ratio, and how the power (actually,
the square root of the power) of the entire signal changes
with distance along the horizontal axis. We can see that
with ¢ = 0, the reflected sidebands cancel out the lower
harmonics, whereas with ¢ = #/2, they reinforce. A per-
fect balance is achieved at ¢ = 7/6, where they approach a
smooth spectrum as the ratio approaches 1.

Fig. 9 shows similar plots for the one-sided formula
[Eq. (1)]with Eq. (9) as the power normalization function.
In these figures,f = 3,f, = —1,and N = 8. Again, the
phase angle ¢ has a similar effect on the reflected side-
bands.

By use of this same program for display of time-variant
spectra, we can show the change of the spectrum with time
for an actual musical case. In fact, this program is very
useful for gaining insight into how the spectrum evolves
with time. For instance, Fig. 10 shows the display for a
brass-like tone. Here the horizontal axis denotes time, thus
showing the evolution of the harmonic amplitudes with
time. We have chosen ¢ = /6 for spectral continuity,
and are using the two-sided form for generality. In this
case, f,, =f.= 1, and the ratio function is similar to the
amplitude function. This causes the fundamental to enter
first and the higher harmonics to enter later.

Fig. 11 shows the display for a gong-like tone. Since
this tone is inharmonic, the partials are not at integer fre-
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quencies. This plot was done with f, = 1, f,, = 1.414,
and N = 9. The function is two-sided, and the phase ¢ is
irrelevant because there is no harmonic overlap with the
reflected sidebands. Only frequencies up to 5 are shown in
this figure. On this tone, the ratio was tapered down with
the amplitude function so that the inharmonicity would
gradually die away, leaving only the fundamental.

IMPLEMENTATION

The implementation of the sine summation formula as a
synthesis technique will be described in terms of the
MUSIC V program [6]. Although this is not necessarily
the best way to implement the technique, it seems a good
way to communicate music synthesis algorithms, much as
FORTRAN and ALGOL are used as languages for com-
municating useful programming algorithms. To do this in
MUSIC V, however, requires two important additions to
the language. We need a divider and provision for a table
lookup. Let us define these in roughly the way as in
Mathews [6].

1 1 1
0 4 O-tmm_/m\l— 0 ;;
N=5
Fc=1
Fm=1
Phase = 0
TWO-Sided
IS
o0
a
1 1 1
0 4 0 0 l;
N=5
Fc=1
Fm=1
Phase = 30
TWO-Sided
1.8
z.:-s (
L;e
6.0
b
1 1 -E 1
o 4 O NORMAL TZATION 0 m‘l'l:
N=5
Fc=1
Fm=1
Phase = 90
TWO-Sided

L&

Fig. 8. Perspective plots of the partials of a harmonic tone pro-
duced by Eq. (3) with F,= 1 Hz, F = 1Hz,and N = 5.
a. ¢ =0. b. ¢ = /6. ¢. & = /2. The ratio is swept from
0 to 1.0 as the graph proceeds from left to right. The frequency
axis comes out of the page with the lowest frequency at the rear
and the largest frequency displayed in the foreground.
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DIV Generator

The DIV generator divides two numbers. It is
diagrammed in Fig. 12. The equation of operation is

where I1 and 12 are the two inputs and O is the output.
In the score,
DIV B2 B3 B4

associates I1 with B2, 12 with B3, and O with B4. Division
by zero is, of course, a problem that we will not attempt
to deal with here. Let us just assume that the divisor is
always nonzero for the purposes of illustration.

TAB Generator

The TAB generator does a simple table lookup. It is
diagrammed in Fig. 13. To operate, it needs a table which

AP e

C

Fig. 9. Perspective plots of the partials of a harmonic tone pro-
duced by Eq. (1) with F =3 Hz, F,, = -1 Hz, and N = 8.
a. » = 0. b. ¢ = 7/6. ¢. ¢ = 7/2. The ratio is swept from
0 to 1.0 as the graph proceeds from left to right. This plot is
analogous to that of Fig. 8.
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stores some function (therange), and a scale factor that ex-
presses what values of the input (the domain) get mapped
into what table locations. The equation of operation is

0O;= Fi([Ili* SCALE]Mod 511)

where i is the index of acoustic output samples and

1 1—r—\l

RATIO NORMALIZATION

ARPLITUDE

N=29
Fc=1
Fm=1
Phase = 30

TWO-Sided

Fig. 10. Perspective plot of the dynamic spectrum of a brass-
like tone. Time proceeds from left to right. In this case the small
plot in the upper right shows the overall amplitude of the signal
with time. The small plot in the upper left shows the ratio as a
function of time. The amplitude and ratio curves are designed to
allow the fundamental to enter first and the higher harmonics to
enter subsequently. This tone would take place in about 0.5
second. The horizontal axis in the lower plot thus represents
0.5 second of time. The upper plots of the ratio and the overall
amplitude also represent 0.5 second.

RATIO NORNALIZATION AMPLITUDE

N=29

Fc =1

Fm = 1.414
Phase = 0
TWO-Sided

1.828
2.414 \\
3.242
3.828 \\
4.656 \

Fig. 11. Perspective plot of the dynamic spectrum of a bell-
like sound. In this case the signal is inharmonic. Both the ampli-
tude envelope and the ratio have exponential curves. The hori-
zontal axis in this case represents several seconds.
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[I1;#*SCALEJyoq 511 is [I1;#SCALE —j*511], j being
selected so that the result always falls between 0 and 510
(inclusive). Fis the function stored in this table; SCALE
is the scale factor that converts the input variable into an
index into the table; I1 ;is the location controlling input;
and O is the output.

Our table is exactly 512 locations long. We might store
the function represented by formula (9) in this table for
512 different values of a froma = 0toa = 1.0 at equally
spaced points. In this case we would set SCALE to 512
so that the value a = 0 accesses the first element of the
table, and values approaching a = 1 approach the end of
the table.

In fact, the Mod 511 in the equation of operation is
not really meaningful here as it is in the OSC generator,
because the function does not necessarily mean anything if
the input variable is out of range. It was added here just
as an error condition, so that at least values of a out of
range would be well defined, although not necessarily
meaningful.

We use the TAB generator to store functions of a, such
as power normalization functions or values of a ¥+1 which
are too costly to compute directly in MUSIC V.

Figs. 14-17 show MUSIC V-like instruments for
realizing the functions shown in Egs. (1), (2), (3), and
(4), respectively. Of course, Fig. 17 [Eq. (4)]is the most
compact. We have not expanded the diagrams to show the
calculations of, for instance, quantities like (N +1)F ,, but
we just placed these expressions in the figures directly. If
one were to actually implement these instruments in
MUSIC V, one would have to add further unit generators
to compute these quantities, and assignment of parameter
numbers to controlling signals would have to be done.
These diagrams just show schematically how the flow of
data could proceed. The variable Amp is used to denote the
overall amplitude of the signal.

For Figs. 14—17 to make sense, we must describe what is
in each of the function tables (identified as F1 through
F6). To correspond to Egs. (1) through (4), F1 must be a
sine, F2 must be a cosine, and F3 is the amplitude nor-

Fig. 12. Diagram of the DIV unit generator. The output is
just I1/12.

Fig. 13. Diagram of the TAB unit generator. This multiplies
I1 by SCALE and uses the result as an index into the table
representing the function F ,
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malization function which, as discussed before, must be
somewhat different for different cases. Function F4 is
(1+a?), function F5 is —a¥*1, and function F6 is (1 —a2).
In Fig. 17 the amplitude normalization table F3 should also
contain the term (1 —a 9 so as to reduce the computation
further.

As with frequency modulation, the oscillators must be
capable of synthesizing negative frequencies. Terms like
F,—F, can easily give negative numbers for the fre-
quencies.

We have not shown in these figures two more unit gen-
erators which would be desired for dynamic control of the
signal. These missing generators should contain the overall
amplitude envelope and the ratio a as a function of time.

USAGE

In the following we shall discuss the implementation of a
small but useful set of instrument tones, giving specific
parameter values as guides (not inflexible rules) to users.
We shall use the simplest form of the technique, which is
shown in Fig. 17 and in Eq. (4).

Although we shall use the names of orchestral instru-
ments in describing these sounds, we must emphasize that
these lables should not be taken too seriously. None of these
instruments are indistinguishable from their orchestral
counterparts. They are given as guides, capturing some of

a

TAB
F5, 512

TAB
F4,512

TAB
F3, 512

Fig. 14. MUSIC V instrument which realizes Eq. (1). Flisa
cosine, F2 is a sine. F3 is the amplitude normalization function.
F4 contains the values of (I +a9?, and F5is —a ¥+1
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the flavor of the orchestral instrument, but without dupli-
cating the rich level of detail found in the waveforms of
natural music instruments.

Brass-Like Tones

To produce brass-like tones, we rely on the well-known
fact that as the tone begins, only the fundamental sounds
at first, with the higher harmonics entering later. Unmuted
brass instruments show no signs of formants and have har-
monically related partials. Thus we can produce a brass-
like tone by setting F, = F,, = the frequency of the note
desired. Fig. 10 shows many things concerning the brass-
like tone. The small plot in the upper right of the figure
shows the overall amplitude envelope. This is used to con-
trol the variable labeled Amp in Fig. 17. As we see it
rises to a peak, maintains a steady state, then descends.
The entire note length in this case is about 0.5 second.
The ratio function rises to a value of 0.78 and maintains it
throughout the steady-state region. It is shown in the small
plot in the upper left corner of Fig. 10. The ratio function
could be arranged to look like the amplitude function with
a peak at the beginning, but we must be very careful not to
allow the ratio to get too great. The bandwidth increases so
rapidly as @ approaches 1.0 that great care must be taken
with larger values of the ratio. Driving the ratio to 1.0 in
the non-band-limited cases [Egs. (2) and (4)]is analogous
to driving the modulation index to infinity in frequency
modulation.

In the foreground of Fig. 10, as explained before, we see

TAB
F3, 512

Fig. 15. MUSIC V instrument which realizes Eq. (2). The func-
tions are the same as in Fig. 14.
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a diagram of exactly how each of the first few harmonics
changes with time. We can see that in fact, this combina-
tion of controlling functions causes the fundamental to
come in first, with the higher harmonics gradually entering.

If the extra computer time is available, we recommend
the use of Eq. (1) with N = 8 for this instrument, rather
than the simple form in Eq. (4). This allows the highest
harmonic to be specified explicitly, so that some of the
““buzzy’’ quality inflicted upon the listener by the highest
harmonics may be eliminated. This produces a much
smoother sound.

Woodwind-Like Tones

There are three classes of woodwind tones we would like
to discuss here. The most dramatic class is that of the
double-reed instruments: bassoon, English horn, and oboe.
These instruments have a characteristic resonance that
seems to be a very strong cue. We can do this with the
sine summation formula by setting F, to the frequency cor-
responding to one of the harmonics higher than the funda-
mental and F,, to the frequency corresponding to the pitch
desired. For instance, for a bassoon-like tone we can set
F, = 5F,. For an English-horn-like tone we can use
F, = 3F,,. This is shown in Fig. 18. As with the brass-like
tones, we use a ratio function that brings in the center fre-
quency first, then brings in the rest of the harmonics. In
this case, the center frequency is not set to the fundamental.
Fig. 18 shows a perspective plot for this English-horn-

Fig. 16. MUSIC V instrument which realizes Eq. (3). Function
F6 contains the values of (1 —a?.
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like tone. The existence of a prominent harmonic simu-
lates a resonance and thus delivers a cue that is representa-
tive of the double-reed instruments. For a bassoon-like tone
the maximum ratio should be reduced to about 0.65.

For saxophone-like tones we must begin the tone with a
large number of partials to simulate the noise burst at the
beginning of the tone. Fig. 19 shows the functions for such
a tone. The ratio begins high (0.92 in this case), then
descends to a steady-state value (0.8 is the value shown).
For clarinet-like tones the only change is to set F, = 2F,,
so that only odd harmonics are produced.

For these tones, as well as many others, it is often useful
to combine two instruments together; one inharmonic
instrument to supply the ‘‘chiff’’ at the beginning of the
tone, and the other instrument to supply the harmonic por-
tion of the tone. Attempting to generate the ‘‘chiff”’ by
using a large initial ratio as was done above is only mod-
erately successful.

Percussive Sounds

As with frequency modulation synthesis, the inharmonic
tones seem to be the most fertile ground for realization.
Generally, these tones begin with a large number of partials
and decay quickly to a pure tone, sometimes called the
““hum’’ tone. A simple way to make inharmonic tones is
tosetF = 1.414F _ This inhibits all overlap, so that there
is no common divisor of the two frequencies, except at
pitches so low that they cannot be heard.

A bell or gong-like sound can be made by making the
overall amplitude and the ratio both exponentials. The ex-
ponential decay of the ratio causes the partials to die out
faster than the center frequency, so that the tone ends with
a single sinusoid. Fig. 11 shows an example of such a tone.
Notice that the partials do not fall conveniently upon a har-
monic series.

Fig. 17. MUSIC V instrument which realizes Eq. (4). This is
the simplest form of the sine summation instrument. Function F3
must be modified in this instrument to include the factor (1 —a 2.
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By changing the amplitude function to one that lasts
longer before decaying, and by reducing the initial (maxi-
mum) ratio to about 0.6, we can produce a drum-like sound
that is shown in Fig. 20. A wood-drum-like sound can be
made by accelerating the decay of the ratio and by using an
extremely high initial ratio. In Fig. 21, we see such a case
with an initial ratio of 0.98.

This completes a minimal catalog of sounds possible
with the sine summation formulas. These are the same
sounds that were described in Chowning’s frequency
modulation article, and demonstrate the similarity of the
techniques.

A

RATIO NORMALIZATION ANPLITUDE

N =20
Fc=3
Fm=1

Phase = 0
TWO-Sided

7 A\

Fig. 18. Perspective plot of double-reed-like tone. In this case
F = 3F,, This simulates a formant frequency. The horizontal
axis represents about 0.5 second.

NS el A

ANPLITUDE

RATIO NORMALIZATION

/ Fc =
Fm =
Phase = 0
TWO-Sided
\
/// \
\

Fig. 19. Perspective plot of saxophone-like tone. The ratio
starts high in an attempt to simulate the ‘‘chiff”’ at the beginning
of the tone. The horizontal axis represents about 0.5 second.
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NUMERICAL CONSIDERATIONS

Numerical problems arise in the use of the sine summa-
tion formulas when the ratio approaches 1. In the normali-
zation functions the term (1 —a 2 appears in the denomi-
nator of several functions. In some cases the normalization
function really does go to infinity, and in some cases it has
a finite limit. In the later case one must substitute the limit
in the table without attempting to divide by zero.

In the evaluation of any of Egs. (1) through (4), the
denominator term goes to zero at 3 = 0 as a — 1.0.
For values near unity, a modulation can occur due to poor

RATIO NORMALIZATION

ANPLITUDE

N=10
Fc=1

Fm =1.414
Phase = 0
TWO-Sided

aoms \\ ‘ﬁ

1.828 \
2.414 ‘\
3.242 j
3.828 \
4.656 —=\
5.242 j

Fig. 20. Perspective plot of drum-like tone. This tone is in-
harmonic with F,, = 1.414F .. The horizontal axis in this case
could be about 0.2 second.

RATIO NORMALIZATION ANPLITUDE

N =10
Fc=1
Fm=1.414
Phase = 0
TWO-Sided

0.414 \! i ¥
1.0 \ \

B = \
3.242 \ \\
3.828
4.656 \ ‘\\
5.242 \

Fig. 21. Perspective plot of wood-drum-like tone. This is simi-
lar to the drum tone shown in Fig. 20, except that the ratio de-
cays to zero very quickly. The horizontal axis represents about
0.2 second.
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resolution in evaluating the cosine. Our solution to this has
been to use a large table for storing the waveforms. A table
of 2000 words or more is adequate for even the lowest
frequency of use. A method pioneered by Barry Vercoe at
M.LT. uses two 256-word tables. The first is the standard
wave table, and the second represents only 1/32 of a period.
When the angle is within a 32nd of a period of zero, the
second table is used. This gives us 32 times the angular
resolution around zero, which is exactly where the trouble
arises. The advantage of this method over the use of a large
table is that only 512 words of storage are used, rather
than the 2000 or more required above. Another technique
would be to use a small table (256 words is adequate)
and use linear interpolation to give the effect of higher
angular resolution.

Even for small values of the ratio, low-frequency tones
will have ‘‘fuzz’’ on them due to insufficient angular reso-
lution, unless one of the above methods of increasing the ef-
fective table length is used.

SUMMARY AND CONCLUSIONS

The discrete sine summation formulas provide another
method for the synthesis of complex time-variant tones
that is very similar to Chowning’s frequency modulation
synthesis. The advantage of these formulas is that the signal
can be explicitly band-limited to a specific number of
components, and that one-sided spectra can be synthesized.
The disadvantage is that even the simplest form is more
complex than frequency modulation, and the use of clumsy
power normalization functions is required.

The important feature of both sine summation formulas
and frequency modulation synthesis is that a large number
of perceptual cues for different musical sounds can be

realized by dynamic control of simple variables, namely,
the amplitude envelope and the spectral envelope of the
signal.

There are surely a large number of discrete summation
formulas which are useful to composers that have not been
discovered yet. It is hoped that this paper will help bring
them out of the summation tables and into the studio.
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